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Certain problems in computer imaging involve
the dynamics of smoothly deforming one image
to another. The dynamics can be looked at as a
flow on the group of smooth, invertible maps, i.e.,
the diffeomorphism group. The variable of inter-
est is the velocity u(x,t), which describes the rate
of deformation of the image. These flows have
been studied extensively when taken with respect
to the kinetic energy norm [ |u|?, as this yields
the Euler equations for an ideal fluid. Another
norm, the H! norm [ |u|?+ |Ou|?, is relevant for
problems in computational anatomy [1]. We have
studied the dynamics with respect to this norm on
manifolds with symmetry, including the sphere
and hyperbolic space. This is a first step in un-
derstanding the dynamics of the diffeomorphism
group on non-Euclidean spaces with respect to
norms other than the Kkinetic energy norm; for
example, Sharon and Mumford [2] recently pro-
posed the space known as Teichmuiller space as a
framework for the study of 2D-shape analysis.

The partial differential equation (PDE) we
study is called EPDiIff, for Euler-Poincaré equa-
tion on the diffeomorphism group. It describes
geodesic motion with respect to the choice of
Hamiltonian. As stated above, this is Euler’s
equation for an ideal fluid when the Hamiltonian
is the Kkinetic energy; and for motion on the real
line, with the H! norm as the Hamiltonian, we
recover the Camassa—Holm equation for shallow
water waves.

EPDiff has remarkable singular solutions
where the velocity has the form of a solitary wave.
A solitary wave is a waveform where the velocity
is some kind of bulge over a small part of the do-
main and rapidly decaying to zero away from that
bulge. For example, the Camassa—Holm equation

H
a
awin

0 pil3 2*pil3 pi
0]

A smooth initial velocity breaks up into puckons.

has solitary wave solutions of the form
u(x,t) = p(t) e x-a0l,

We see that q(t) marks the position of the wave’s
peak and p(t) gives the peak height, or the wave’s
velocity. Remarkably, the parameters g, p sat-
isfy Hamilton’s canonical equations. When one
considers a space that is more complicated than
the real line, similar types of solitary wave solu-
tions exist with canonical parameters g, p, but the
waveforms are more complicated than exp(—|x|)
and less amenable to analytical study.

We have studied the dynamics of EPDiff (with
the H! norm) on manifolds which possess a sym-
metry with respect to S' rotations. The most
familiar example is the sphere, and hyperbolic
space is also a manifold of this type. Recall that
on the real line, the solitary wave had its peak at
a point x = q(t). Analogously, on the sphere, the
solitary wave solution will have a peak at a cer-
tain latitude @ = ®(t) so that the peak extends all
the way around the sphere at that latitude. Thus
the wave is like a girdle on the sphere. In refer-
ence to a quote by Puck in A Midsummer Night's
Dream, “I’ll put a girdle about the earth in forty
minutes,” we call these solitary waves puckons.
When an initially smooth velocity evolves under
EPDiff, it interestingly breaks up into a series of
the solitary waves. The figure above shows this
numerically. Therefore, understanding the behav-
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ior of these solitary wave solutions is essential to
understanding the dynamics of EPDIff.

A puckon also has another degree of freedom:
rotation. The girdle can move up and down the
sphere, and it can also rotate with a conserved an-
gular momentum. For a single puckon, we have
found the analytical solution for its canonical co-
latitude @(t), which is sinusoidal with a period
depending on the value of the Hamiltonian. In ad-
dition, the rotating puckon is constrained to move
between minimum and maximum latitudes which
depend on the puckon’s angular momentum and
the Hamiltonian. This is illustrated in the numer-
ical solutions shown in the column to the right.
(Only the solutions for the meridional velocity
u- @and the canonical colatitude @(t) are shown
here.) Also, a point on the girdle of the rotating
puckon follows a great circle of the sphere. But
if the angular momentum is zero, then the puckon
has no minimum and maximum latitudes, and it
will collapse upon itself at either pole and bounce
back into the midlatitudes.

In addition to the sphere, we also studied the
specific case of hyperbolic space in some detail.
See [3] for more information.
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A single rotating puckon. Numerical solution to
the EPDiff PDE (top) and numerical solution to
the canonical equations for ®(t) (bottom).
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